Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance
نویسندگان
چکیده
منابع مشابه
Prestin and the dynamic stiffness of cochlear outer hair cells.
The outer hair cell (OHC) lateral wall is a unique trilaminate structure consisting of the plasma membrane, the cortical lattice, and subsurface cisternae. OHCs are capable of altering their length in response to transmembrane voltage change. This so-called electromotile response is presumed to result from conformational changes of membrane-bound protein molecules, named prestin. OHC motility i...
متن کاملCochlear amplification, outer hair cells and prestin.
Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, ...
متن کاملCochlear outer hair cell motility.
Normal hearing depends on sound amplification within the mammalian cochlea. The amplification, without which the auditory system is effectively deaf, can be traced to the correct functioning of a group of motile sensory hair cells, the outer hair cells of the cochlea. Acting like motor cells, outer hair cells produce forces that are driven by graded changes in membrane potential. The forces dep...
متن کاملCochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss
Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward a...
متن کاملStaurosporine-induced collapse of cochlear hair bundles
Early postnatal mouse cochlear cultures were treated with a small panel of kinase inhibitors to elucidate the mechanisms underlying the maintenance of hair-bundle structure in the developing inner ear. At low concentrations (1-10 nM), staurosporine causes the collapse and loss of hair bundles without provoking hair-cell death, as judged by lack of terminal transferase dUTP nick end labeling (TU...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/s41598-017-03773-y